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Abstract

The validity of traditional welfare analysis in economics, based on the revealed

preference paradigm, can be undermined by demand frictions such as default options,

cognitive limitations, and limited or distorted information. This paper develops a

general framework for discrete choice welfare analysis given quasi-experimental inter-

ventions that remove such frictions, which relies on relatively minimal assumptions on

individual heterogeneity and overcomes key limitations of existing methodologies. It

does so by mapping this problem to the literature on identification of functionals of

the joint distribution of two potential outcomes, and takes a partial identification ap-

proach. I illustrate the approach in the context of product demand with non-salient taxes.
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1. Introduction

Welfare analysis in economics was traditionally rooted in the paradigm of revealed prefer-

ence, which instructs us to infer objectives and welfare from choices Beshears et al. (2008),

Bernheim and Taubinsky (2018). But choices can sometimes be influenced by factors that are

not considered relevant for welfare, such as default options, cognitive limitations, or informa-

tional frictions DellaVigna (2009), Bernheim and Taubinsky (2018), Train (2015), Handel et al.

(2019). This idea, which can be traced back to the distinction between a decision utility and an

experienced utility Kahneman et al. (1997), Mullainathan et al. (2012), undermines the validity

of the revealed-preferences approach. For this reason over the last decade standard techniques

have been complemented with methods that try to provide valid results when decision util-

ity and experienced utility diverge Mullainathan et al. (2012), Bernheim and Taubinsky (2018).

Mullainathan et al. (2012) show that to study the welfare consequences of taxation on

agents that don’t perfectly optimize with respect to taxes, it’s crucial to discern two distinct

demand curves. The first represents the scenario where agents optimize correctly, and the

second reflects their flawed optimization. If a behavioral model suggests that agents make

optimal decisions under specific conditions (for instance, in the absence of taxes or when taxes

are transparently displayed in prices), then (quasi-)experimental exposure to these conditions

can be used to identify the relevant demand curves. For example, Chetty et al. (2009) identify

these alternative demands in a field experiment, randomly posting tax-inclusive prices in a

grocery store chain. In a separate estimation strategy, they conduct a similar analysis for

beer leveraging differences across states and over time in excise taxes (visible on listed prices)

and sales taxes (applied during checkout).

While Mullainathan et al. (2012) underline how their framework can be used to study

several problems beyond commodity taxation, including the provision of social insurance

and the correction of externalities, they restrict attention to the case of homogeneous and

non-stochastic behavioral biases. Relaxing this assumption, the demand curves for optimizing
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and behavioral agents are no longer sufficient to identify welfare effects. More recent work

by Allcott and Taubinsky (2015), Spinnewijn (2017), Taubinsky and Rees-Jones (2018), has

shown that working under the assumption of homogeneous frictions can severely distort the

results of the analysis. Some of these papers suggest the use of within-subject designs, that

try to elicit willingness to pay under multiple conditions from the same subjects, to recover

identification of welfare effects. One drawback of these methods is that they can be applied

to a more limited range of data. Furthermore, within-subjects designs suffer from common

threats that can undermine their internal validity, such as order effects (Clark and Friesen

(2008)) and identification comes at the cost of additional assumptions.

This paper addresses these challenges in a binary choice setting and proposes a framework

to conduct behavioral welfare analysis with arbitrarily heterogeneous behavioral biases, while

relying exclusively on between-subject (quasi-)experimental variation. The key assumption

in my framework is that I can observe the “demand curve” under both “clear” (without

frictions) and “noisy” (with frictions) states. These are the same demand functions required

by the original work of Mullainathan et al. (2012), which I use to provide bounds for welfare

effects, taking a partial identification approach. A difference between this paper and the

existing literature in behavioral public finance is that my bounds do not impose any para-

metric assumption on the demand curves, while many of the cited papers adopt a sufficient

statistics approach that relies on demand linearization. I adopt instead the approach used in

Bhattacharya (2015) to conduct nonparametric welfare analysis in discrete choice settings,

extending it to the context of behavioral welfare analysis. My partial identification approach

is also closely connected to the literature on distributional treatment effects Heckman et al.

(1997), Frandsen and Lefgren (2021), a parallel that allows me to use ideas that originated

in that literature to narrow my identified intervals. More generally, my exercise connects

to a literature that uses optimal transport methods to study the partial identification of

functionals of the joint distribution of potential outcomes Fan et al. (2017).

The main application studied in this paper concerns agents whose choices are impacted by

3



the salience of taxes. This is one of the leading examples studied in the growing literature on

behavioral public finance Chetty et al. (2009), Taubinsky and Rees-Jones (2018), Bernheim

and Taubinsky (2018). Following some of the most relevant papers in this literature, and

in particular Taubinsky and Rees-Jones (2018), I focus on a simple model of binary choice

where agents’ decision utility is quasilinear and agents can misperceive taxes when these are

not salient. In this setting, I study the identification and estimation of the excess burden of

taxation and show that this is not identified by the observable demand curves unless very

stringent conditions are imposed. I re-analyze the experimental data from Taubinsky and

Rees-Jones (2018) in which participants in an online platform are asked to indicate at what

price they would purchase a series of items. Choice takes place in a condition in which state

taxes are charged, or in a condition in which no taxes are charged. Importantly the experiment

nests a between-subject design that I use for my bounds, and a within-subject design that they

need in their approach to obtain point identification. I can therefore use their data to compare

the results obtained with both methodologies. I find that the two approaches provide overall

similar results. This suggests that my bounds can be useful to extend the analysis to those

settings where we lack reliable within-subject data. At the same time, given that the bounds

are based on weaker assumptions compared to point estimates, any point estimates falling out-

side the bounds hint at a possible violation of the additional assumptions needed for the latter.

The paper proceeds as follows: Section 2 presents my motivating example. Section 3

presents the general theoretical framework and discusses the main results. Section 4 discusses

an empirical application to salience and taxation. Section 5 concludes.

2. Motivating example

The main application studied in this paper concerns agents whose choices are impacted by

the salience of taxes. This is one of the leading examples studied in the growing literature on

behavioral public finance Chetty et al. (2009), Taubinsky and Rees-Jones (2018), Bernheim
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and Taubinsky (2018). Following some of the most relevant papers in this literature, and

in particular Taubinsky and Rees-Jones (2018), I focus on a simple model of binary choice

where agents’ decision utility is quasilinear and agents can misperceive taxes when they are

not salient, because not shown on a product’s price-tag. In this setting, I will discuss the

introduction of a value tax τ on the previously untaxed binary good. The welfare measures

of interest will be the efficiency cost of the tax, or excess burden of taxation (EB), and the

consumer loss from its introduction, as measured by equivalent variation (EV).

Agent i’s valuation for a binary product is v∗
i and, when taxes are not salient, i behaves

as if the tax rate τ was actually θiτ for some non-negative and bounded scalar θi. This setup

is compatible with several frictions: inattention, incorrect beliefs, and rounding heuristics.

The benchmark of correctly anticipated taxes is given by θi = 1, which is the case for all

agents if taxes are salient (e.g. posted on a product’s price tag). We have therefore that with

non salient taxes, i buys if his valuation is greater than the total price he anticipates to pay:

xi(p, τ) = 1{v∗
i > p(1 + θiτ)}. If taxes were correctly anticipated, i would take the optimal

choice x∗
i (p, τ) = 1{v∗

i > p(1 + τ)} , and maximize his utility function

Ui(x) = x[v∗
i − p(1 + τ)]

Assuming supply is perfectly elastic, the excess burden of taxation is simply the lost surplus

from discouraged transactions. The transaction of agent i is discouraged by the introduction

of the tax if i would have bought the product without the tax, but does not buy it with the

tax, so that xi(p, τ) < xi(p, 0). In this case i loses the surplus that he would have benefited

from the transaction, given by v∗
i − p: the difference between his valuation for the product

and the pre-tax price of the good. The excess burden of taxation EB is obtained aggregating
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these losses over the population. 12

EB = E
[
(v∗

i − p) × 1{xi(p, τ) < xi(p, 0)}
]

= E
[
(v∗

i − p) × 1{p < v∗
i ≤ p(1 + θiτ)}

]
(1)

Mullainathan et al. (2012) show that, when θi is homogeneous and non-stochastic in

the population, observing two alternative demand curves is sufficient to study the welfare

consequences of taxation. The first of these demands, that I denote D∗(p), should repre-

sent a scenario in which agents optimize correctly. The second demand instead should be

representative of agents’ actual choices xi(p, τ) in the setting in which taxes are present

but not shown on posted prices, I denote this demand curve D(p). My approach requires

knowledge of these two functions, which can be obtained with any de-biasing intervention

that as-good-as-randomly makes taxes salient, or removes them. For example, Chetty et al.

(2009) ran a quasi-experiment with a grocery store chain, posting tax-inclusive prices on

some products of some of the stores, over a limited time period, to estimate the elasticity of

demand to taxes. They exploit independent variation in prices to separately estimate the price

elasticity of demand, and identify the two demands assuming that these are approximately

linear. Alternatively, some identify D∗(p) is through variations in the tax rate. Indeed, in our

model x(p, 0) = x∗(p, 0), so that choices made when τ = 0 are optimal. I focus on this case

for expositional simplicity, since in the empirical section of the paper I will re-analyze data

from Taubinsky and Rees-Jones (2018), who identify D∗(p) eliciting willingness to pay with

and without taxes in a randomized experiment. So I define

D∗(p) = Pr
[
x∗

i (p, 0) = 1
]

D(p) = Pr
[
xi(p, τ) = 1

]
(2)

2Without taxes, i purchases a product provided his evaluation is above the pre-tax price: v∗
i > p. When

the tax rate rises to τ , i switches to not purchasing the same product if his evaluation is below his perceived
tax inclusive price: v∗

i ≤ p(1 + θiτ). Therefore i’s choice is affected by the introduction of the tax if and only
if his evaluation is between the pre-tax price and his perceived tax-inclusive price. Since θ > 0 we can rewrite
this as p < v∗

i ≤ p(1 + θiτ) or, equivalently, v∗
i /(1 + θiτ) < p ≤ v∗

i .
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The next session describes how we can use these demand curves to identify the excess burden

of taxation when θi is heterogeneous in the population.

2.1. Identification

Start with the following observation: knowing the two demand curves is equivalent to

knowing the marginal distributions of two potential reservation prices: one is the reservation

price that individuals reveal when taxes are zero, and which coincides with their valuation v∗
i

for the product. The other is the reservation price they reveal when taxes are equal to τ , this

is vi = v∗
i /(1 + θiτ).

D∗(p) = Pr
[
xi(p, 0) = 1

]
D(p) = Pr

[
xi(p, τ) = 1

]
= Pr

[
v∗

i > p
]

= Pr
[
v∗

i /(1 + θiτ) > p
]

= 1 − Fv∗(p) = 1 − Fv(p) (3)

We can similarly rewrite EB in (1) in terms of v∗
i and vi:

EB = E
[
(v∗

i − p) × 1
{
vi ≤ p < v∗

i

}]
. (4)

Knowledge of the marginals Fv∗ and Fv does not pin down EB: the expectation in (4)

is taken with respect to the unobserved joint distribution of vi and v∗
i and it cannot be

separated in two expectations over the marginals. The impossibility of identifying EB arises

because we don’t have a way to choose the true joint distribution of vi and v∗
i among all

those that share the observed marginals. Consider a simple example where our population

consists of three individuals. Then Fv∗ is the distribution of their three reservation prices

without taxes v∗
1, v∗

2, and v∗
3 , and Fv is the distribution of their three reservation prices

2Remember that without taxes, i purchases a product provided his evaluation is above the pre-tax price:
v∗

i > p. When the tax rate raises to τ , i switches to not purchasing the same product if his evaluation is below
his perceived tax inclusive price: v∗

i ≤ p(1 + θiτ). Therefore i’s choice is affected by the introduction of the
tax if and only if his evaluation is between the pre-tax price and his perceived tax-inclusive price. Since θ > 0
we can rewrite this as p < v∗

i ≤ p(1 + θiτ) or, equivalently, v∗
i /(1 + θiτ) < p ≤ v∗

i .
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with taxes v1, v2, and v3. Figure 1 shows that these distributions (and hence these demand

curves) do not identify EB because they can originate from joint distributions associated

with different values of EB. In Figure 1a and 1b, the (fixed) marginal distributions of v∗
i

and vi are matched differently, determining different joint distributions. In the two resulting

joint distributions, the dashed line represents the individual whose transaction is lost due

to the introduction of the tax. This is the individual who has a reservation price v∗
i > p

before the tax is introduced, and a reservation price vi < p after the tax is introduced. This

individual is different in the two distributions, and so is the surplus lost. In Figure 1a the

affected individual loses a surplus of $1, while in 1b the affected individual loses a surplus of $3.

(a) EB = 1/3

(b) EB = 1

Figure 1: Different joint distributions are compatible with the given marginals of vi and v∗
i .

The value of EB would be different if the true joint distribution was the one represented in
(a) or the one represented in (b).

Even if we cannot determine EB from Fv∗ and Fv, we can use our knowledge of the

marginals to bound it. In our simple example with three individuals, we know that EB
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Figure 2: This matching of v∗
i and vi gives EB = 5/3 but violates our assumption that θi ≥ 0,

which implies that vi < v∗
i for all i. 5/3 remains an upper bound for EB, but not a tight one.

results from some matching of their reservation prices without taxes v∗
1, v∗

2, and v∗
3 , to their

reservation prices with taxes v1, v2, and v3. Table 1 reports all such matchings, together

with the excess burden of the tax that they would imply. For example, the two matchings

represented in figures 1a and 1b correspond to the first and the third lines of the table. All

the matchings in the table 1 generate values of EB that fall between 1/3 and 5/3, which

must therefore bound the true value of EB.

These bounds are obtained using only the constraints imposed by our knowledge of the

marginal distributions Fv∗ and Fv, and we may hope to narrow them imposing any additional

assumption that we consider reasonable. For example, in our model we assumed θi > 0, and

we defined vi = v∗
i /(1 + θiτ). This implies that for every i we must have vi ≤ v∗

i . Some of

the matchings in table 1 include pairs (v∗
i , vi) that violate this condition, and are therefore

ruled out by our assumption. The highest and lowest values of EB that come from matchings

compatible with θi > 0 are therefore 1/3 and 1, which are narrower than the bounds obtained

without assuming θi > 0. Figure 2 shows an example of a matching that is incompatible with

θi ≥ 0.
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Matching EB any v∗
i < vi ?

(v∗
1, v1) (v∗

2, v2) (v∗
3, v3)

(9, 8) (11,9) (13, 11) 1/3 no
(9, 9) (11,8) (13, 11) 1/3 no
(9, 8) (11, 11) (13,9) 1 no
(9, 9) (11, 11) (13,8) 1 no

(9,11) (11,8) (13,9) 5/3 yes
(9,11) (11,9) (13,8) 5/3 yes

Table 1: enumeration of all possible matchings in the simple example displayed in figures 1-2.
Each line shows a possible matching (v∗

1, v1), (v∗
2, v2), (v∗

3, v3), the values of the excess burden
of taxation associated with that matching (assuming a pre-tax price p = 10 as in the figures)
and whether v∗

i < vi for any individual in that matching. Pairs in bold characters indicate
individuals who change their choice when the tax is introduced.

3. General Framework

This section starts definig choice settings, and describing the process of making choices

through individual choice functions and revealed valuations. Choice settings are categorized

into two groups: clear and noisy, based on whether choices within these settings maximize

a specified utility function among the available alternatives. The concept of policies is

introduced as changes in choice settings. The subsequent discussion focuses on defining the

welfare implications of a policy, with a specific focus on metrics such as equivalent variation

and related measures. The main results of the paper are then presented. These express the

equivalent variation of a policy in terms of revealed values across different scenarios, and

establish a natural bridge between the distribution of welfare effects and demand functions.

The identification problem is then discussed and bounds are obtained as solutions to two

optimal transport problems. The section proceeds discussing assumptions under which

narrower bounds can be obtained.

3.1. Choice, utility, and revealed valuations

Agent i ∈ I = [0, 1] has a total amount of money mi and chooses x ∈ {0, 1}. Choos-

ing x = 1 costs p. Any money left goes into consumption of a unit cost numeraire good
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y, therefore any feasible consumption bundle (x, y) satisfies with equality the budget con-

straint xp+y = mi. To focus only on nontrivial choice problems, I assume that mi > p for all i.

Agent i’s utility from consuming (x, y) is

Ui(x, y) = ϕix + φi(y) (5)

which satisfies the following

Assumption 1 φi(y) is a strictly increasing continuous function and φ−1
i (·) denotes the

corresponding unique inverse.

This is the same assumption imposed on utility by Bhattacharya (2015). It basically

requires that more of the numeraire is better, the continuity assumption is technical and

guarantees that inverses are defined everywhere.

In this paper, I will think of choice as taking place in different environments. I will refer

to these interchangeably using the terms environments, settings, situations, or states. I follow

Bernheim and Rangel (2009) and define the choice environment faced by individual i as a set

of feasible alternatives (the budget line, characterized by p and mi) and ancillary conditions ζ.

Ancillary conditions are features of the environment that may affect behavior, but which are

not taken as relevant to a social planner’s evaluation. Typical examples of ancillary conditions

include the information available to i at the moment of choice, how information or alternatives

are presented, the salience of a default option or of different components of price, the point in

time at which a choice is made. A generic choice environment is therefore represented by the

triplet (m, p, ζ).

Optimal choice is a function of price p and monetary endowment m

x∗
i (m, p) = arg max

x∈{0,1}
Ui(x, y) s.t. m = xp + y
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while i’s choice xi(m, p, ζ) may be affected by ancillary conditions as well, and be suboptimal.

I will say that the choice setting is clear if i chooses optimally, so that xi(m, p, ζ) = x∗
i (m, p).

When this is not the case I’ll say that the setting is noisy.

As a regularity condition on choices, I require that individual demand for the binary good

be weakly decreasing in its price.

Assumption 2 xi(m, p, ζ) is weakly decreasing in p, for any pair (m, ζ).

In light of assumption 2, individual choice in a given setting can be conveniently described

defining i’s reservation price in that setting

vi(m, ζ) = inf{p : xi(m, p, ζ) = 0}

In a clear setting, assumption 1 implies that vi(m, ζ) = v∗
i (m), where

v∗
i (m) = m − φ−1

i

(
φi(m) − ϕi

)

Therefore, assumption 2 is enough to rewrite demand functions in terms of the marginal

distributions Fv and Fv∗ as in equation (3).

3.2. policies, indirect utility, and equivalent variation

A policy π affects individuals’ choice settings, transforming the pre-policy settings (pi, mi, ζi)

into (p′
i, m′

i, ζ ′
i) for all i ∈ I. To study the average welfare effects of π in the population. I focus

on one of the most widespread money metrics for welfare effects: equivalent variation. When

the policy of interest consists of the introduction of a new tax on the binary good, another

measure of interest will be the efficiency cost, or excess burden of this tax, introduced in the mo-

tivating example. I will discuss this measure as well, and its connection to equivalent variation.
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These welfare measures can be conveniently described through the indirect utility function.

Vi(m, p, ζ) = Ui

(
xi(m, p, ζ), m − p × xi(m, p, ζ)

)

The equivalent variation of policy π for individual i is defined as the change in wealth, at

pre-policy conditions, that would have the same effect on i’s utility as would the policy. This

can be expressed in terms of indirect utility as the smallest solution S to

Vi(m − S, p, ζ) = Vi(m′, p′, ζ ′) (6)

Finally, following Auerbach (1985), I measure the excess burden (deadweight cost) of a tax

as the amount of additional tax revenue that could be collected from the consumer i while

keeping his utility constant, if the distortionary tax were replaced with a lump-sum tax. The

excess burden of the tax on i is zero if i’s choice is not affected by the introduction of the tax

and coincides with equivalent variation otherwise. So that results for the excess burden of

taxation will easily follow from results on equivalent variation.

3.3. Results

3.3.a. Equivalent variation from a change in price.– Consider a generalized version of

the problem discussed in the motivating example, where we replace the quasilinear utility

specification with the expression in 5. In this case the ancillary condition ζ will represent the

part of the total price which is not salient to individuals. For example, the total price of the

product would be q = p + ζ where only p is salient (the pretax price in our previous example)

while ζ is not (the total tax, in our example) and is taken into imperfect consideration. Just

like before we represented imperfect consideration of the nonsalient component of the price

by a parameter θi ≥ 0 so that i’s choice is

xi(m, p + ζ, ζ) = 1
{
ϕi + φi(m − p − θiζ) > φi(m)

}
(7)

13



while i’s optimal choice would be

x∗
i (m, p + ζ) = 1

{
ϕi + φi(m − p − ζ) > φi(m)

}
(8)

Choice coincides with optimal choice when the total price is salient, which in our example

can happen when taxes are zero, or when tax inclusive prices are posted. We would represent

this as xi(m, p, 0) = x∗
i (m, p).

The following theorem, proved in appendix A, studies the equivalent variation associated

with an increase in the price of the binary good, when part of the price increase is non-salient.

Theorem 1 Suppose that x(m, p, ζ) and x∗(m, p) are as in (7) and (8), respectively. Consider

a policy π that introduces a price increase, only part of which is salient. In other words, π

changes the choice environment for i from (mi, p, 0) to (mi, p + ∆p, ζ), where ζ ∈ [0, ∆p]. Let

EVi denote the equivalent variation to π for i. Then

EVi = 0 if v∗
i (mi) ≤ p

EVi = v∗
i (mi) − p if v∗

i (mi) > p and vi(mi) ≤ p + ∆p

EVi > [v∗
i (mi) − p, p + ∆p] if p < v∗

i (mi) < p + ∆p and vi(mi) > p + ∆p

EVi = ∆p if v∗
i (mi) ≥ p + ∆p and vi(mi) > p + ∆p

Some interesting results follow from this as special cases. For example Bhattacharya (2015)

studies identification of the welfare effects of price changes in clear settings. If we set ζ = 0 in

theorem 1 above, we obtain one of the main results in that paper.

Corollary 2 [price change in clear setting] If the price change is entirely salient (ζ = 0), we

recover an equivalent version3 of lemma 1 of Bhattacharya (2015). In this case, both pre-policy
3The original one is expressed in terms of utility functions instead of reservation prices.
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and post-policy settings are clear, so that vi(m) = v∗
i (m). Therefore the lemma above becomes

EVi =



0 if vi(mi) ≤ p

vi(mi) − p if p < vi(mi) ≤ p + ∆p

∆p if vi(mi) > p + ∆p

A version of the first half of the main theorem in Bhattacharya (2015) also follows very

naturally from this expression. Here EVi is just a function of vi(m), whose distribution is

identified from aggregate demand. It follows that the entire distribution of EVi is identified by

aggregate demand curve D(·)

Pr{EVi ≤ a} =



0 if a < 0

Fv(a + p) if 0 ≤ a ≤ ∆p

1 if a > ∆p

A second corollary of the lemma is that the formula for EBi presented in the motivating

example remains valid without assuming quasilinear utility, and without assuming that the

entire tax is not salient 4.

Corollary 3 [Excess Burden of Tax] Suppose that x(m, p, ζ) and x∗(m, p) are as in (7) and

(8), respectively. Consider a policy π that introduces a tax, only part of which is salient,

in a context where all previous taxes were salient. In other words, π changes the choice

environment for i from (mi, p, 0) to (mi, p + tp, ζ), where ζ ∈ [0, t]. Let EBi denote the excess
4In our introduction we could have applied the exact same formulas to study the contextual introduction

of two taxes, such as a salient excise tax and a non-salient sales tax, in a population with arbitrary utility
functions.
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burden of the tax for i. Then EBi is identified by v∗
i (mi) and vi(mi) as follows:

EBi =



0 if v∗
i (mi) ≤ p

v∗
i (mi) − p if v∗

i (mi) > p and vi(mi) ≤ p + t

0 if vi(mi) > p + t

In this case, EBi is a function of two distinct reservation prices: EBi = EB(v∗
i , vi) where

EB(v∗, v) = (v∗ − p)1{p < v∗}1{v ≤ p + t} (9)

In this case, we would expect to be able to identify the entire distribution of EBi from the

joint distribution of vi and v∗
i . Indeed, we can write

Pr{EBi ≤ a} =



0 if a < 0

Fv∗(p) + 1 − Fv(p + t) if a = 0

Pr{EBi ≤ 0} + Fv∗|M(a + p) × PM if a > 0

1 if a > t + ζ(θ − 1)

where Fv∗|M is the cdf of v∗ for individuals that are “marginal” in the sense that that their

transactions are discouraged by the tax: Fv∗|M(·) = Pr{v∗
i ≤ · | v∗

i (mi) > p , vi(mi) ≤ p + t}.

Similarly PM is the fraction of marginal individuals in the population. Finally, θ is any upper

bound to the support of θi, possibly ∞.

3.3.b. Equivalent variation from a generic policy, under quasilinear utility.– If we restrict to

quasilinear utility, we can provide a similar result to theorem 1 for a broader class of policies:

Lemma 4 Suppose that utility is quasilinear and that under policy π, the choice environment

for individual i changes from the clean setting (m, p, ζ) to (m′, p′, ζ ′). Let EVi denote the
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equivalent variation to π for i. Then

EVi =



−∆m if v∗
i (m) ≤ p and vi(m′, ζ ′) ≤ p′

p′ − ∆m − v∗
i (m) if v∗

i (m) ≤ p and vi(m′, ζ ′) > p′

v∗
i (m) − p − ∆m if v∗

i (m) > p and vi(m′, ζ ′) ≤ p′

∆p − ∆m if v∗
i (m) > p and vi(m′, ζ ′) > p′

where ∆m = (m′ − m) and ∆p = (p′ − p).

Proof. in appendix A. ■

3.4. Welfare Analysis

In the simple example considered in table 1, I obtained upper and lower bounds for EB

going through all the possible joint distributions compatible with the observed marginal Fv

and F ∗
v . This approach can be easily generalized: let Π(Fv, Fv∗) denote the set of all joint

distributions of with marginals Fv and Fv∗ . We can bound EB from below and from above

finding in this set the joint distributions that minimize, and maximize, the expectation of

EB(v∗, v). The best bunds we can obtain without making use of any information besides the

one contained in the marginals of v∗ and v are therefore the values of two optimal transport

problems

EBL = inf
π∈Π(Fv∗ ,Fv)

Eπ[EB(v∗, v)], (10)

and

EBU = sup
π∈Π(Fv∗ ,Fv)

Eπ[EB(v∗, v)]. (11)

An optimal transport (OT) problem is any problem of the form

inf
π∈Π(FX ,FY )

Eπ[f(X, Y )] (12)

where Π(FX , FY ) denotes the set of all joint distributions of X and Y with marginals FX
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and FY , and Eπ[·] is the expectation taken with respect to the joint distribution π. If f

is interpreted as a cost, problem (12) is the problem of transforming distribution FX in

FY as efficiently as possible, and when X and Y are continuous random variables it is the

infinite-dimensional extension of the discrete problem of matching. This basic problem has

several applications within mathematics and many other fields and is currently an extremely

active research area both in theory and applications. Our problems in (10) and (11) are

special cases of (12) where FX = Fv∗ , FY = Fv, and f(· , ·) is equal to EB(· , ·) in (9) or

−EB(· , ·), respectively.

One of the few cases in which problem (12) admits a closed-form solution is when f(· , ·)

is submodular, or supermodular. A function f(· , ·) is submodular if, for any x < x′ and

y < y′ we have that f(x, y) + f(x′, y′) ≤ f(x, y′) + f(x′, y) and is supermodular if −f(· , ·) is

submodular. The following lemma shows that EB(· , ·) is a submodular function and then

applies standard results in optimal transport theory to derive a closed-form expression for the

bounds, in terms of the marginal distributions Fv∗ and Fv.

Lemma 5 The function

EB(x, y) = (x − p)1{p ≤ x}1{y ≤ p + t}

is submodular. Classical results in optimal transport theory then imply that EBL and EBU ,

as defined in (10) and (11) , are

EBL = E
[
EB

(
F −1

v∗ (U), F −1
v (U)

)]

and

EBU = E
[
EB

(
F −1

v∗ (U), F −1
v (1 − U)

)]
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where U ∼ U(0, 1) and F −1
v∗ and F −1

v denote the quantile functions of v∗
i and vi , defined as

F −1
v∗ (u) = inf

{
x : Fv∗(x) > u

}
F −1

v (u) = inf
{
x : Fv(x) > u

}

Proof.

Let x < x′ and y < y′. We need to show that

EB(x, y) + EB(x′, y′) ≤ EB(x, y′) + EB(x′, y).

Note that EB(·, y) is increasing for any y, therefore EB(x, y) ≤ EB(x′, y). Similarly EB(x, ·)

is decreasing for any x, therefore EB(x′, y′) ≤ EB(x′, y). This proves that EB(· , ·) is

submodular. The expressions for the bounds follow then by well-known results in optimal

transport theory (see e.g. Galichon (2017) Thm. 4.3), which generalize the Fréchet-Hoeffding

inequalities to submodular functions. ■

The result states that the lower and upper bounds are obtained when the marginal dis-

tributions are matched via the Fréchet-Hoeffding lower and upper copulas, respectively. An

intuitive interpretation of this fact in the non-salient taxes example, is that the tax deadweight

loss is minimized if the tax introduction does not impact agents’ ranking in terms of their

reservation prices. In other words, while the bias may affect how many transactions are

discouraged by the tax, it does not affect the order in which agents leave the market as the

tax increases. If this happens, then the first transactions to be discouraged when a tax is

introduced are those of the buyers with the lowest valuations for the product, whose surplus

from the deal is minimal. In our framework, this happens for example if θi is homogeneous in

the population. If θi = θ for all i, then the revealed valuation vi is just a rescaled version of

the true valuation as vi = v∗
i /(1 + θτ). Agents rankings in terms of vi and v∗

i must therefore

coincide as vi ≥ vj if and only if v∗
i ≥ v∗

j .

The upper bound obtained via the Fréchet-Hoeffding upper copula, on the other side,

19



requires that individual rankings are reversed when the tax is introduced. The individual

holding the highest valuation in the clear setting becomes the one with the lowest revealed

valuation in the noisy setting, and so on. While this upper bound is typically much larger

than the lower one, it depicts a situation that may be incompatible with our theoretical

model. For example, requiring that the individual with the lowest v∗
i be also the one with the

highest vi typically implies that for this individual θi < 0 , which is ruled out by our model.

We may therefore hope to obtain more informative upper bounds by restricting the set of

joint distributions over which the optimization in (11) takes place to those which are also

compatible with our modelling assumptions.

3.5. Narrowing bounds via additional assumptions

Identified sets based on Fréchet-Hoeffding bounds are common in the literature on dis-

tributional treatment effects, that studies the identification and estimation of functionals

of the treatment effects distribution beyond the ATE. Under standard experiments and in

many quasi-experimental setups, researchers can identify the marginal cdfs F0 and F1 of

potential outcomes Y (0) and Y (1). For reasons analogous to the ones discussed above for

welfare effects, researchers cannot identify parameters that depend on the joint distribution

of potential outcomes such as the fraction of individuals harmed by a treatment, the median

treatment effect, or the expected treatment effect conditional on the potential outcome in the

control state. Most treatment effects parameters of interest can be expressed as θ0 = E[ν(∆)],

where ∆ denotes the difference between two potential outcomes ∆ = Y (1) − Y (0). The

problem of finding an upper bound for these parameters based uniquely on the observed

marginals is, therefore, a version of problem (12) where FX = F0, FY = F1, and the loss

function f(X, Y ) is given by −ν(Y − X). For example, the fraction of individuals harmed

by treatment can be expressed as θ0 = E[1(∆ ≤ 0)], and the α-quantile treatment effect

θ0 = F −1
∆ (α) can be bounded inverting the bounds for F∆(δ) = E[1(∆ ≤ δ)]. In this

literature, bounds based on Fréchet-Hoeffding copulas tend to be wide and preclude meaning-

ful inference, so research has developed to come up with additional restrictions to tighten them.
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Some of these assumptions impose constraints on the support of the joint distribution of

the two potential outcomes, requiring that Pr
(
(Y (0), Y (1)) ∈ C

)
= 1 for some closed set

C ∈ R2. The general case is discussed in Kim (2014), but special cases such as assuming

monotone treatment effects, or a Roy selection model, were among the first restrictions

to be studied in the literature (Manski (1997), Heckman et al. (1997)). Other restrictions

grant point identification but may be too strong to be palatable in many empirical settings.

One example is the assumption of constant treatment effects or the slightly more general

assumption of rank invariance (Heckman et al. (1997), Chernozhukov and Hansen (2005))

which would be equivalent to assuming a lower Fréchet bound. Similarly, assuming that gains

∆ are independent of the base state Y (0) implies that the distribution of Y (1) is a convolution

of Y (0) and ∆, and deconvolution methods can be applied to point identify the distribution

of ∆ from F1 and F0 (Heckman et al. (1997)).

An assumption that seems to have wider applicability is studied in Frandsen and Lefgren

(2021) and requires that the two potential outcomes be stochastically increasing in each

other. Contrarily to rank invariance, this allows individuals with the same Y (0) to have

different values of Y (1). If Y (1) is stochastically increasing in Y (0), though, individuals

with high values of Y (0) must draw their values of Y (1) from more favorable (first order

stochastically dominant) distributions. Other similar but weaker requirements of positive

dependence between potential outcomes are also used to narrow the Fréchet bounds. Some

examples are positive quadrant dependence (Bhattacharya et al. (2012)), stochastic dominance

(Blundell et al. (2007)), and imposing bounds on measures of association such as Kendall’s τ

or Spearman’s ρ (Heckman et al. (1997), Fan and Soo Park (2009)).

The difference between the problem of finding an upper bound to the excess burden of

a tax and bounding distributional treatment effects is therefore the different loss function

f(X, Y ) that these problems imply in their OT formulation (12). For this reason, results

obtained using these restrictions in the treatment effects literature cannot be applied directly

to our case, and minor modifications are required.
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The assumptions that I will be using to narrow the upper bound for EB are two: the

first is a version of the support assumption, while the second is the assumption that vi is

stochastically increasing in v∗
i .

Assumption 3 Pr
(

v∗
i + ζ(1 − θ) ≤ vi ≤ v∗

i + ζ
)

= 1 for known θ < ∞.

This follows directly from the fact that in our model the parameter θi is non-negative and

bounded.

Assumption 4 Pr
(

vi ≤ p
∣∣∣∣ v∗

i = x
)

is (weakly) decreasing in x.

This assumption requires that individuals with higher valuations v∗
i for the binary good

are more likely to buy it also in the presence of taxes, and rules out an exceedingly strong

positive correlation between v∗
i and θi. This is for example weaker than assuming that biases

are independent of product valuations. In the upper bound derivation, this property will only

be required to hold almost surely with respect to Fv∗ .

Proposition 6 [upper bound] Under Assumptions 3 and 4, EB ≤ EBU where

EBU = E
[
(v∗

i − p) × 1
{
p ≤ v∗

i ≤ q
}]

×

 Fv(p) − Fv∗(p)
Fv∗(q) − Fv∗(p)



where q = p + θt.

Proof. The function κ0(x) = Pr
(
vi ≤ p

∣∣∣∣ v∗
i = x

)
is sufficient to identify EB. Indeed

EB = E
[
(v∗

i − p) × 1(p < v∗
i ) × 1(vi ≤ p + t)

]
= E

[
(v∗

i − p) × 1(p < v∗
i ) × E

[
1(vi ≤ p + t)

∣∣∣v∗
]]

= E
[
(v∗

i − p) × 1(p < v∗
i ) × κ0(v∗

i )
]

(13)
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Both assumptions impose constraints on this function. Under assumption 4

k0(x) ≤ k0(x′) for all x′ > x (14)

while under assumption 3

κ0(x) = 1 if x ≤ p (15)

κ0(x) = 0 if x > q (16)

where q = p + θt. Always under assumption 3 , I prove (claim 8 in appendix) that

Fv(p) − Fv∗(p) =
∫ q

p
κ0(z) dFv∗(z) (17)

Therefore under assumptions 3 and 4 we know that κ0 ∈ K, where

K =
{
κ : R → [0, 1] such that (14) (15) (16) and (17) hold replacing κ to κ0

}

Expression (13) implies that EB ≤ EBU , where

EBU = sup
κ∈K

E
[
(v∗

i − p) × 1(p < v∗
i ) × κ(v∗

i )
]
.

Since k can be seen as a decreasing weighting function (whose integral is fixed), the sup is

attained as a max by the only κ∗ ∈ K which is constant over the interval [p, q]. The value of

the constant is pinned down by (17) and is

K = Fv(p) − Fv∗(p)
Fv∗(p(1 + θτ)) − Fv∗(p)

So we have that

κ∗(x) = 1(x ≤ p) + 1(x ≤ q) × K

EBU is the optimand evaluated at κ∗(x). ■

23



The idea behind this result is that EB is a weighted average of (v∗
i − p), where the weights

are given by κ(x) = Pr
(
vi ≤ p

∣∣∣ v∗
i = x

)
so that knowledge of κ would allow us to identify

EB. Assumptions 3 and 4 impose restrictions on κ, so we can construct an upper bound

maximizing the weighted average expression for EB over all weighting functions that satisfy

these restrictions. In particular, the assumption that vi is stochastically increasing in v∗
i

imposes non-increasing weights, while the support assumption implies zero weight on values

of v∗
i > q. The weighting function that maximizes the expression for EB is then constant

between p and q, and zero after. Finally, the value of the constant is pinned down as the only

one compatible with the total amount of discouraged transactions Fv(p) − Fv∗(p).

Proposition 7 [lower bound] If θi > 0 almost surely, then EB ≥ EBL where

EBL = E
[
(v∗

i − p) × 1
{
p ≤ v∗

i ≤ F −1
v∗

(
Fv(p)

)}]

This bound is sharp and remains such under Assumptions 3 and 4.

This is a restatement of the result for the lower bound in section 3.4 . The assumption

θi > 0 is not used to derive the bound and is only necessary for the characterization of the

excess burden of taxation given in (1) to hold. The bound is sharp because there is a joint

distribution of v∗
i and vi that attains it. In particular, EB = EBL when the ranking of

individuals is the same regardless of whether they are sorted by v∗
i or by vi . It remains sharp

under both assumptions because this particular joint distribution is not ruled out by either.

3.6. point identification in special cases

A simple but important fact proved as claim 8 in appendix A is that, under assumption 3

we can identify how many transactions are affected by the tax, and

Pr
{
xi(m, p, 0) ̸= xi(m, p, t)

}
= Fv(p) − Fv∗(p) (18)
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In some special cases this gives us point identification of EB. For example, an immediate

consequence of equation (18) is that EB is point identified when it is equal to zero 5. Indeed

this happens only when no transactions are discouraged by the tax, which is point identified

under Assumption 3. Similarly, we can point identify EB when the share of discouraged

transactions is maximal. Under Assumption 3 we know that the only transactions that can

be discouraged are those of individuals with p < v∗
i ≤ q, where q = p + θt 6. The amount of

individuals with v∗
i in this range is Fv∗(q) − Fv∗(p) and because of (18) it coincides with the

amount of discouraged transactions when Fv(p) = Fv∗(p + θt).

In this case

EB =
[
v∗

i − p
∣∣∣∣ p < v∗

i ≤ q
]

× Pr
{

p < v∗
i ≤ q

}
Two important cases that lead to the situations above are when θ is degenerate on one

corner of the admissible region [0, θ]. Indeed if θ = 0 with probability one, the two marginals

are pointwise equal, not just at p. Similarly if θ = θ with probability one Fv(x) = Fv∗(x(1+θτ))

for all values of x, not just when x = p.

4. Application: tax salience

The goal of the empirical section of this paper is to show how inference conducted

using aggregate demand curves alone, giving up point identification of the excess burden of

taxation, can be as informative as inference obtained using methods that impose higher data

requirements, and stronger assumptions, with the objective of obtaining point identification.
5Or, equivalently, when Fv∗(·) and Fv(·) coincide at the product price p.
6To see this, note that under Assumption 3 we know that individuals with v∗

i < p will not buy the product
regardless of the tax, since for them vi ≤ v∗

i + t < p + t. Similarly, individuals with v∗
i ≥ p + θt will buy the

product in any case, since for them vi ≥ v∗
i + t(1 − θ) ≥ p + t.
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4.1. Data and Results

We estimate the bounds described in the previous section using data from an experiment

run by Taubinsky and Rees-Jones (2018). For the sake of brevity, we will only describe the

experiment in its fundamental aspects. We refer the reader to the original paper by Taubinsky

and Rees-Jones (2018) for a comprehensive and detailed description.

The experiment consisted of a series of shopping decisions involving twenty common

household products. For each product, consumers saw a picture and a product description

drawn from Amazon.com. Consumers then used a slider to select the highest tag price

at which they would be willing to purchase the product. These decisions were taken by

subjects in two consecutive modules of the experiment: in the first module, consumers

made shopping decisions with either a zero tax rate (no-tax arm), or a standard tax rate

corresponding to their city of residence (standard-tax arm). Each consumer was randomly

assigned to one of the two treatment arms. The second module of the experiment was a rep-

etition of the first one, except that all consumers made shopping decisions with a zero tax rate.

We will not use data from the second module of the experiment to estimate the bounds

for EB and construct the corresponding confidence intervals. We will only use these data to

compare our results to those obtained with the methods used in Taubinsky and Rees-Jones

(2018), where within-subject measurements and additional assumptions are required to estab-

lish point identification. We see in the weaker data requirements of our approach one of its

main advantages, as data sources that enable identification of the marginal distributions of

two potential outcomes (the aggregate demands) are much more common than those that

allow the identification of their joint distribution.

This experiment was designed specifically to elicit from consumers the reservation prices

we introduced in section 2.1 . Indeed, letting pik
1 denote the reservation price revealed in
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module 1 of the experiment by agent i for product k, we have

pik
1 =


v∗

ik if i assigned to no-tax arm

wik if i assigned to standard-tax arm

where we are allowing consumers’ valuations and biases to vary with the products. This

data is sufficient to estimate the bounds defined in the previous section and conduct inference

on EB for each product k. We estimate the bounds using the following sample averages taken

over the no-tax arm of the experiment (of size N0)

ÊB
k

L = 1
N0

∑
i

(pik
1 − pk)1

{
pk ≤ pik

1 ≤ F̂ −1
vk

(
F̂wk(p)

)}
(19)

ÊB
k

U = 1
N0

∑
i

(pik
1 − pk) × 1{pk ≤ pik

1 ≤ pk(1 + θτ)} × F̂ k
w(p) − F̂ k

v (p)
F̂ k

v (p(1 + θτ)) − F̂ k
v (p)

(20)

Where F̂ k
v and F̂ k

w are the empirical distribution functions of pik
1 in the no-tax and standard-

tax arms, respectively. We obtain 95% confidence intervals via bootstrapping. Our results

are shown in Figure 3.

Let now pik
2 be the price selected in module 2 by agent i for product k. According to our

setup, we should have that for all participants to the experiment pik
2 = v∗

ik
7. In practice, there

might be systematic differences in the values elicited from the two modules, which we refer

to as order effects. This is a phenomenon commonly found in pricing experiments, and the

control arm of the experiment was designed by Taubinsky and Rees-Jones to accommodate

these effects. For simplicity suppose that these effects take the form of an additive error ϵik

so that

pik
2 = v∗

ik + ϵik

7we would therefore be able to observe θik ≈ log(pik
2 ) − log(pik

1 ) for individuals in the standard-tax arm.
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Figure 3: Identified regions for the excess burden of taxation for each of the products. 95%
confidence intervals obtained by bootstrap.
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4.2. Compare to Taubinsky and Rees-Jones (2018)

Taubinsky and Rees-Jones (2018) suggest an approximation to the excess burden of

taxation

EB ≈ −1
2t2

(
E[θi|p, t]Dt(p, t) + V ar(θi|p, t)Dp(p, t)

)
(21)

where Dt and Dp denote partial derivatives of demand with respect to p and t, and E[θi|p, t]

and V ar[θi|p, t] are the mean and variance of θi for consumers who are indifferent about

purchasing the product when its price is p and taxes are t.

This is a good approximation if demand D(p, t) as a function of price p and total taxes

t = p(1 + τ) is approximately linear, and if θi is approximately independent of v∗
i when

v∗
i ∈ [p, p(1 + θτ)] . In this case (21) is equivalent to

EB ≈ EBL + V ar(θi|p, t) × EB∗ (22)

where EBL is the lower bound for EB described above, and EB∗ is the excess burden of

taxation under salient taxes:

EB∗ = E
[
(v∗

i − p) × 1
{
p ≤ v∗

i ≤ p(1 + τ)
}]

which is point identified by Fv∗ and can be estimated by the sample average in the no-tax arm

ÊB∗ = 1
N

∑
i

(v∗
i − p) × 1{p ≤ v∗

i ≤ p(1 + τ)}

Since V ar[θi|p, t] is not identified by D(p) and D∗(p), the expression in (22) is also not

identified. Anyways, it will simplify the comparison of our results to those that Taubinsky

and Rees-Jones obtain under stricter assumptions and using more data.
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Taubinsky and Rees-Jones provide estimators for E[θi|p, t] and V ar(θi|p, t) that use

data from both modules of their experiment, and exploit within-subject elicitation of both

potential reservation prices. These estimators are valid under the following assumption, which

fundamentally requires that order effects do not vary by experimental arm.

Assumption 5 For any vector of covariates Xik , E[log(pik
2 ) − log(pik

1 ) − log(1 + θikτ)|Xik]

does not depend on τ .

We want to check whether these additional data and assumptions are useful for obtaining

narrower confidence intervals for EB. To do so, we use their estimator for V ar(θi|p, t),

together with the approximation in (22) and our estimators for EBL and EB∗, to obtain a

point estimate for EB. We bootstrap this estimate and compare the resulting 95% confidence

intervals with the ones we obtained using only the first module of the experiment, without

the need to impose linearity of the demand function or any particular property of the order

effects. The results are shown in Figure 4.

4.3. Discussion

From a comparison of the confidence intervals obtained using the two alternative ap-

proaches, the first thing we notice is that for most products they seem to substantially

coincide, and that only for a few products (thrashbags, shoerack, detergent) leveraging ad-

ditional data and assumptions seems to bring substantially tighter intervals. The second is

that for some products (in particular for booklight, but also for others) the intervals have

comparable measures, but they do not overlap for a good part. We suggest that this is due to

the fact that D(p, t) is not well approximated by a linear function, and that this undermines

the validity of the approximation that underpins the approach of Taubinsky and Rees-Jones.

The approximation in (22) is good if Fv∗(·) is approximately linear over the interval

[p, p(1 + θτ)]. For most of the products in our sample, Fv∗ displays strong nonlinearities

around integer values, as shown in Figure 5 , while it is approximately linear between these
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Figure 4: In blue: 95% confidence intervals for EB obtained using only data from module 1
of the experiment as in Figure 3. In red: 95% confidence intervals for EB obtained using
also within-subject data (from module 2 of the experiment) and additional assumptions for
point-identification of EB, as detailed in Taubinsky and Rees-Jones (2018).
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Figure 5: Empirical cdfs for v∗
i and vi for the product "bathmat".

values. We would therefore expect the assumption to be particularly weak when a major

nonlinearity falls in the interval [p, p(1 + θτ)]. We test this computing the confidence intervals

under different product prices, chosen so that one of the main nonlinearities of Fv∗ is included

in the interval. As shown in Figure 6 , this drives the confidence intervals computed following

Taubinsky and Rees-Jones (2018) away from those that do not rely on the linearity assumption.

5. Summary and Conclusion

This paper underscores a fundamental insight: methods initially developed for nonpara-

metric classical welfare analysis in discrete choice scenarios naturally extend to the realm of

behavioral welfare analysis. These methods also establish a direct connection with the litera-
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Figure 6: Replication of the results from Figure 4, but replacing actual product prices with
either $9.5 or $4.5, depending on the shape of Fv∗ .
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ture on distributional treatment effects and, more broadly, with research employing optimal

transport methods to explore partial identification. Importantly, this approach accommodates

arbitrarily heterogeneous behavioral biases while exclusively relying on between-subject (quasi-

)experimental variation. This differentiation sets it apart from earlier works in behavioral

public finance, which assumed homogeneous behavioral biases in similar data settings. It

also distinguishes it from recent research, which accommodates heterogeneous biases but

necessitates within-subject variation and additional assumptions. Furthermore, the absence

of parametric assumptions on demand curves in our bounds distinguishes this paper from

others in behavioral public finance adopting a sufficient statistics approach reliant on demand

linearization.

In conclusion, our approach offers distinctive characteristics that augment existing methods

in the field of behavioral welfare analysis. Foremost, it emphasizes directness, enabling a clear

and straightforward interpretation of underlying assumptions. This clarity empowers users

to better understand foundations and the implications of the assumptions, and promotes

greater trust and reliability in the results. Our methodology demonstrates the potential to

provide informative bounds, with evidence from a validation exercise suggesting that it may

yield confidence intervals comparable to those derived from existing approaches. Moreover,

our approach exhibits notable flexibility, making it applicable to standard experimental or

quasi-experimental data. This versatility reduces the necessity for within-subjects elicitation

of willingness to pay in controlled lab settings, expanding the range of real-world applications

where it can be effectively employed. Lastly, our approach aligns closely with the prevailing

practices in the related literature on treatment effects distribution. By incorporating method-

ologies and principles that resonate with the current state of the field, our approach maintains

relevance and consistency with contemporary research practices. In summary, our approach

stands as a valuable contribution to the field, offering simplicity, transparency, precision,

flexibility, and alignment with current research trends.
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Appendix

A. Proofs

Proof of lemma 1.

First note that in this setting vi(m) is characterized by

ϕi + φi(m − vi(m) − ζ(θi − 1)) = φ(m)

therefore

vi(m) = m − φ−1
i (φi(m) − ϕi) + ζ(1 − θi)

= v∗
i (m) + ζ(1 − θi).

If θi ∈ [0, θ], this implies

v∗
i (m) ≤ vi(m) + ζ(θ − 1)

vi(m) ≤ v∗
i (m) + ζ

Secondly, note that

Vi(m − S, p, 0) = max
{
ϕi + φi(m − S − p), φi(m − S)

}
Vi(m, p + ∆p, ζ) ∈

{
ϕi + φi(m − ∆p − p), φi(m)

}

So that for S < 0 we must have Vi(m − S, p, 0) > Vi(m, p + ∆p, ζ).

Now, since EVi is the smallest solution S to

Vi(m − S, p, 0)︸ ︷︷ ︸
LHS

= Vi(m, p + ∆p, ζ)︸ ︷︷ ︸
RHS

(23)
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we must have

EVi ≥ 0. (24)

Finally, remember that by definition of v∗
i (m), we have ϕi + φi(m − v∗

i (m)) = φi(m),

therefore for any S ∈ [0, v∗(m) − p]

ϕi + φi(m − S − p) ≥ ϕi + φi(m − v∗
i (m))

= φi(m)

≥ φi(m − S)

where the inequalities follow from the fact that φi(·) is strictly increasing. This implies that

x∗
i (m − S, p) = 1 ∀S ∈ [0, v∗(m) − p] (25)

Now we can start analyzing the different cases enunciated in the lemma.

Case v∗
i (mi) ≤ p :

Since vi(m) ≤ v∗
i (m) + ζ we know that v(m) ≤ p + ∆p and therefore xi(mi, p + ∆p, ζ) = 0.

This means that RHS in (23) is equal to φi(m). Also, since v∗
i (m) < p, we know that

x∗
i (mi − S, p, 0)

∣∣∣∣
S=0

= 0 and the LHS is also equal to φi(m). Since EVi ≥ 0 by (24), we must

have EVi = 0.

Case p < v∗
i (mi) and vi(mi) ≤ p + ∆p:

We know from (25) that LHS of (23) is ϕi + φi(mi − S − p) for all S ∈ [0, v∗
i (mi) − p]. This

is strictly decreasing in S and, for S = v∗
i (mi) − p, it becomes ϕi + φi(mi − v∗

i (mi)) = φi(mi).

The RHS of (23) is also equal to φi(mi), given that vi(mi) ≤ p + ∆p. This implies that

EVi = v∗
i (mi) − p .

Case p < v∗
i (mi) < p + ∆p and vi(mi) > p + ∆p:

We know from (25) that LHS of (23) is ϕi + φi(mi − S − p) for all S ∈ [0, v∗
i (mi) − p]. This is
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strictly decreasing in S and, for S = v∗
i (mi) − p, it becomes ϕi + φi(mi − v∗

i (mi)) = φi(mi) >

ϕi + φi(mi − p − ∆p), which is the RHS of (23) given that vi(mi) > p + ∆p. This implies that

EVi ≥ v∗
i (mi) − p, which proves the lower bound. Now consider S = p + ∆p. We have that

Vi(m − S, p, 0) = max{φi(m − p − ∆p), ϕi + φi(m − 2p − ∆p)}, where either of the terms is

smaller than the RHS. Therefore must be EVi < p + ∆p .

Case v∗
i (mi) ≥ p + ∆p and vi(mi) > p + ∆p:

We know from (25) that LHS of (23) is ϕi + φi(mi − S − p) for all S ∈ [0, ∆p]. This is strictly

decreasing in S and, for S = ∆p, it becomes ϕi + φi(mi − p − ∆p). The RHS of (23) is also

equal to ϕi + φi(mi − p − ∆p), given that vi(mi) > p + ∆p. This implies that EVi = ∆p.

■

Proof of Lemma 4.

We know from (6) that EVi is the smallest solution S to

Vi(m − S, p, ζi) = Vi(m′, p′, ζ ′)

also, since utility is quasilinear, we can rewrite without loss of generality

U(x, y) = ϕi + y

and optimal reservation prices do not depend on income: v∗
i (m) = ϕi for all m ∈ R+.

Case v∗
i (m) ≤ p and vi(m′, ζ ′) ≤ p′:

Since utility is quasilinear, v∗
i (m − S) = v∗

i (m) ≤ p and x∗
i (m − S, p) = 0. Since

v′
i(m′, ζ ′) ≤ p′, we also have xi(m′, p′, ζ ′) = 0 and can therefore rewrite (6) as

m − S = m′
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which has unique solution EVi = −∆m

Case v∗
i (m) ≤ p and vi(m′, ζ ′) > p′:

Since utility is quasilinear, v∗
i (m − S) = v∗

i (m) ≤ p and x∗
i (m − S, p) = 0. Since

v′
i(m′, ζ ′) > p′, we also have xi(m′, p′, ζ ′) = 1 and can therefore rewrite (6) as

m − S = ϕi + m′ − p′

which has unique solution EVi = p′ − ∆m − ϕi = p′ − ∆m − v∗
i (m)

Case v∗
i (m) > p and vi(m′, ζ ′) ≤ p′:

Since utility is quasilinear, v∗
i (m − S) = v∗

i (m) > p and x∗
i (m − S, p) = 1. Since

v′
i(m′, ζ ′) ≤ p′, we also have xi(m′, p′, ζ ′) = 0 and can therefore rewrite (6) as

ϕi + m − S − p = m′

which has unique solution EVi = ϕi − p − ∆m = v∗
i (m) − p − ∆m

Case v∗
i (m) > p and vi(m′, ζ ′) > p′:

Since utility is quasilinear, v∗
i (m − S) = v∗

i (m) > p and x∗
i (m − S, p) = 1. Since

v′
i(m′, ζ ′) > p′, we also have xi(m′, p′, ζ ′) = 1 and can therefore rewrite (6) as

ϕi + m − S − p = ϕi + m′ − p′

which has unique solution EVi = ∆p − ∆m ■
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Claim 8 Under assumption 3

Fv(p) − Fv∗(p) =
∫ q

p
κ0(z) dFv∗(z)

Proof. The idea is to prove that under assumption 3 , both sides of the expression represent

the total amount of discouraged transactions. Indeed

Pr
{
xi(m, p, 0) ̸= xi(m, p, t)

}
= Pr

{
vi − t ≤ p < v∗

i

}
= Pr

{
v∗

i > p
}

− Pr
{
vi > p

}
= Fv(p) − Fv∗(p) (26)

where the assumption is used in the first equality, that requires vi − t ≤ v∗
i to hold. Similarly

∫ q

p
κ0(z) dFv∗(z) = E

[
1(p ≤ v∗

i ≤ q) × E
[
1(vi ≤ p + t)

∣∣∣v∗
]]

= E
[
1(p ≤ v∗

i ≤ q) × 1(vi ≤ p + t)
]

= Pr
{
xi(p, 0) ̸= xi(p, τ)

}

■
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